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Abstract

An expedient route to rare carbohydrate-like fragments that relies on the highly stereoselective osmium-
catalyzed dihydroxylation of 2-sulfonyl-2-hydroxyalkyl-3-vinyloxiranes is outlined. © 2000 Elsevier Science Ltd.
All rights reserved.
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The osmium-catalyzed dihydroxylation of alkenes bearing an allylic oxygen takes place with high
anti stereoselectivity in most cases.2 Interestingly, to our knowledge, there are just three reports on
the dihydroxylation of alkenyltrans-oxiranes that occurred with low stereoselectivity.3 While the use
of reagent-controlled catalytic asymmetric dihydroxylation procedures4 provided good to excellent
diastereocontrol in those cases,3,5 we felt thatcis-substituted oxiranes could display a useful level of
diastereoselectivity even in the absence of chiral ligands. Enantiopure sulfonyl vinyl oxiranesB, readily
available by metal-catalyzed oxidation at sulfur followed by hydroxyl-directed epoxidation at the most
electron deficient double bond,6 appeared as good test substrates for this study since the dihydroxylation
to give adductsC would also produce rare carbohydrate-like fragments in an expedient fashion (four steps
from commercially available menthyl sulfinate) (Scheme 1). The recent disclosure of the work by Cossy
et al. on the dihydroxylation ofcis-substituted isopropenyl cyclopropanes, oxiranes and aziridines,7

prompted us to report our preliminary results on this subject.8

Scheme 1.
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To enhance the synthetic usefulness of our proposed approach to carbohydrate-like fragments we
sought an efficient procedure for preparing diastereomeric oxiranes, such as3 (Scheme 2) from
1. After many fruitless attempts under Mitsunobu conditions we turned our attention to an oxida-
tion–reduction protocol. After considerable experimentation, we found that the reduction of ketone2
with NaBH4�CeCl39 gave an excellent yield of the desired product3, readily separated from a small
amount of1.10 It should be pointed out that the stereoselectivity of this reduction is opposite to the
literature data,9 probably due to the presence of the sulfonyl moiety in our substrate2.

Scheme 2.

Table 1 gathers our preliminary results on the osmium-catalyzed dihydroxylation of our sulfonyl vinyl
oxiranes.11,12 To evaluate the stereodirecting capabilities of the benzylic and/or sulfinyl chiral centers,
in the absence of the oxirane, the dihydroxylation of diene4 was studied and a good yield of a 60:40
mixture of sulfinyl triacetates5 was obtained along with some sulfone6, also as a 60:40 mixture; standard
oxidation of5 gave6 in good yield. Under similar conditions, hydroxy vinyl oxirane3 led to a fair yield
of a 65:35 mixture of triacetate7 and ketone8, derived from overoxidation at the benzylic position, both
obtained as single isomers. In contrast, benzyl ether9 gave the corresponding protected triol10 with
diminished diastereoselectivity (85:15). Entries 4 and 5 show that diastereomeric hydroxy vinyl oxirane
1 is also a good substrate for this protocol giving triacetate12 as a single isomer along with a small
amount of ketone8, provided that osmylation is not allowed to proceed for a long time.

While the observed overoxidation is likely related with the reaction time and the benzylic nature of
these substrates, we sought an alternative protecting group that would prevent overoxidation without
compromising the facial selectivity of the process. In this regard the osmylation of acetoxy vinyl oxirane
13 was explored to give, after removal of the acetate and peracetylation, a single isomer of triacetate12
(entry 6). Finally, we addressed the ‘simultaneous’ dihydroxylation of14at both vinyl residues that gave
just two of the four possible isomers of the rare protected heptitols15 and16 in a highly stereoselective
manner (entry 7).

The isolation of ketone8 from both diastereomers3 and1 indicates that the stereochemical outcome
of the process is independent of the configuration of the hydroxyalkyl substituentcis to the vinyl moiety.
The very high selectivity found for these substrates is in sharp contrast to the recent findings of Cossy et
al. for acis-2-alkyl-3-vinyloxirane that, unlike the related isopropenyl oxiranes, gave a 50:50 mixture of
diastereomers upon catalytic dihydroxylation.7 These results may be accounted for largely as described
by these authors in terms of electrophilic addition to the less hindered face of thegaucheconformation
D (Scheme 3).13 In our case, the presence of the bulky sulfonyl moiety is likely to exert a determining
influence on the conformational distribution of the key secondary alcohol center of R, and that in turn
controls the conformation of the vinyl residue.

Scheme 3.
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Table 1
Osmium-catalyzed dihydroxylation of sulfonyl vinyl oxiranes

In conclusion, the osmium-catalyzed dihydroxylation of readily available enantiopure 2-sulfonyl-2-
hydroxyalkyl-3-vinyloxiranes takes place with excellent selectivity to produce unusual carbohydrate
fragments. We are currently studying the scope and limitations of this process as well as additional
applications of the methodology.
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